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New and unexpected results are presented regarding the nonlinear interactions
between a wavepacket and a vortical mean flow, with an eye towards internal wave
dynamics in the atmosphere and oceans and the problem of ‘missing forces’ in
atmospheric gravity-wave parametrizations. The present results centre around a pre-
wave-breaking scenario termed ‘wave capture’, which differs significantly from the
standard such scenarios associated with critical layers or mean density decay with
altitude. We focus on the peculiar wave–mean interactions that accompany wave
capture. Examples of these interactions are presented for layerwise-two-dimensional,
layerwise-non-divergent flows in a three-dimensional Boussinesq system, in the strong-
stratification limit.

The nature of the interactions can be summarized in the phrase ‘wave–vortex
duality’, whose key points are firstly that wavepackets behave in some respects
like vortex pairs, as originally shown in the pioneering work of Bretherton (1969),
and secondly that a collection of interacting wavepackets and vortices satisfies a
conservation theorem for the sum of wave pseudomomentum and vortex impulse,
provided that the impulse is defined appropriately. It must be defined as the rotated
dipole moment of the Lagrangian-mean potential vorticity (PV). This PV differs
crucially from the PV evaluated from the curl of either the Lagrangian-mean or the
Eulerian-mean velocity. The results are established here in the strong-stratification
limit for rotating (quasi-geostrophic) as well as for non-rotating systems. The
concomitant momentum budgets can be expected to be relatively complicated, and
to involve far-field recoil effects in the sense discussed in Bühler & McIntyre (2003).
The results underline the three-way distinction between impulse, pseudomomentum,
and momentum. While momentum involves the total velocity field, impulse and
pseudomomentum involve, in different ways, only the vortical part of the velocity field.

1. Introduction
Recently we reported a new insight into wave-induced mean forces (Bühler &

McIntyre 2003, hereafter BM03). A standard paradigm widely used in atmospheric
modelling says that significant – meaning persistent, cumulative – O(a2) mean forces
induced by waves of amplitude O(a) can arise only when and where the waves are
generated or dissipated. We showed by detailed analysis of an idealized problem that
the standard paradigm is wrong, except for the two-dimensional, translationally or
rotationally invariant, backgrounds assumed by classical non-acceleration theorems.
For three-dimensional backgrounds the paradigm omits significant mean forces not
associated with wave generation or dissipation.
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(a) (b)

Figure 1. (a) Wavepacket exposed to pure horizontal strain contracting along the x-axis and
extending along the y-axis. The wavecrests align with the extension axis and their spacing is
decreased, so that the wavenumber vector k points at right angles to the extension axis and
grows in magnitude, as suggested by the large arrow. (b) A pair of oppositely signed vortices
exposed to same strain. The arrow now indicates the vortex pair’s Kelvin impulse.

Such ‘missing forces’ appear to be generic to a far wider range of problems
than the idealized problem studied in BM03, which was confined to weak-refraction
asymptotics and shallow-water flow, or equivalent gasdynamic flow. By appealing
to results from generalized Lagrangian-mean (GLM) theory and taking note, in
particular, of the pioneering work of Bretherton (1969, hereafter B69), we argued
in BM03 that similar missing forces will arise in realistic problems of internal inertia–
gravity waves in stratified, rotating fluid media. As recalled in BM03, such problems
are directly relevant to atmospheric modelling, and possibly to ocean modelling as
well. We also noted that essentially the same phenomena may be expected to be
characteristic of phonon–vortex interactions in superfluids.†

The forces arise from the persistent advection of vorticity or potential-vorticity
anomalies, relative to their surroundings, by O(a2) wave-induced mean velocities. As
shown in BM03, a vortex core can be thus advected – so that the effect of the waves is
equivalent to a sideways Magnus force on the core in the absence of waves – even if a
refracted wavetrain passes at a distance remote from the core. We therefore described
the effective force on the vortex core as a ‘remote recoil’. The present paper develops
the theory for more realistic three-dimensional stratified problems, and confirms that
various kinds of remote recoil are indeed involved. Some of them are even more
striking than in the case of BM03.

The simplest and most striking example of all is that of figure 1(a), an internal
gravity or inertia–gravity wavepacket in a steady background flow consisting of pure
horizontal strain. This is an extreme case of strong refraction. As pointed out by Jones
(1969) and by Badulin & Shrira (1993), hereafter J69 and BS93, such a wavepacket
rapidly becomes frozen into the background flow, with the wavecrests behaving as
passive tracers. The wavelength and intrinsic group velocity shrink toward zero like
exp(−|α|t), for horizontal strain-rate α, while the wavenumber k goes like exp(|α|t).
The exponential behaviour makes this process a non-trivial variant of classical critical-
level absorption. We call it ‘wave capture’. At first sight it confronts us with an

† This is a controversial topic. Within a big literature one may cite, for instance, the
complementary discussions and bibliographies in Nazarenko, Zabusky & Scheidegger (1995) and
Stone (2000).
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acute paradox regarding wave-induced mean forces. The so-called momentum of the
wavepacket, strictly the packet-integrated pseudomomentum P, being equal to k times
the packet’s conserved wave action, tends toward infinity like exp(|α|t) until the waves
break or otherwise dissipate. The horizontal component PH likewise tends toward
infinity, as hinted by the large arrow in figure 1(a). If one were to believe the version
of the ‘wave momentum myth’ sometimes associated with the standard paradigm –
saying that the waves, on dissipating, give ‘their momentum’ to the mean flow – then
one would be left with a picture in which a local wave-induced force, exponentially
larger than the forces involved in generating the wavepacket, suddenly appears out
of nowhere as the waves break.

Here we show in detail how the resolution of the paradox lies precisely in
the remoteness of the associated recoil and in the presence of missing forces
and momentum fluxes – missing, that is, from the above picture – which operate
throughout the evolution of the wavepacket and not just when it is generated and
dissipated. These forces and momentum fluxes are anything but local. In fact, the
key to understanding the situation is the same as the key to understanding what
happens to a two-dimensional vortex pair being pulled apart by pure strain, as shown
in figure 1(b). Here the wavepacket is replaced by a vortex pair and PH is replaced
by the Kelvin hydrodynamical impulse I, namely the first moment of the vorticity
distribution rotated through a right angle, i.e. the rotated dipole moment (e.g. p. 529
in Batchelor 1967).

I changes under strain in a manner closely analogous to the way PH changes for the
wavepacket, accompanied by essentially the same remote-recoil effects. In developing
a general theoretical framework we shall find it convenient, therefore, to speak of a
generalized vortex dynamics involving a wave–vortex duality, implying a non-trivial
extension of standard vortex dynamics for strongly stratified, layerwise-two-dimen-
sional flow. A central result of this paper is that when vortices and wavepackets are
both present they satisfy a conservation theorem for the sum PH + I, (7.6) below,
as long as I is defined in a suitable way. Then, for instance, if a wavepacket is
being strained by the velocity field of a nearby vortex pair, the resulting changes
in its PH are accompanied by compensating changes in I for the vortex pair. An
example of this will be analysed in detail (§ 10 below). One may regard the situation
of figure 1(a) as a formal limiting case in which the background strain is produced
by suitably distributed vortices at infinity. The changing PH of the wavepacket is
accompanied by a remote recoil on the infinitely distant vortices, changing their total
I in compensation. A parallel conservation theorem holds, and is similarly useful, in
problems of three-dimensional phonon–vortex interactions in superfluids (Bühler &
McIntyre, in preparation).†

† The three-dimensional PH + I conservation theorem greatly simplifies the description and
quantification of phonon–vortex interactions, by comparison with momentum-based descriptions
such as those cited in the previous footnote. In connection with the quantum-fluids and
condensed-matter literature we caution that not only pseudomomentum and momentum, but
also momentum and impulse, are sometimes conflated. (One reason may simply be that in some
languages, including Russian and German, a single word ‘Impuls’ tends to be used for all three; an
old paper by one of us, On the wave momentum myth (McIntyre 1981), has been circulated in Russian
translation as Mif o volnovom impul’sye. Another reason for the conflation may be a technical error
dating back to 1976 and propagated in the well-known book by Donnelly (1991, p. 15), equating
rates of change of momentum and impulse through, in effect, mistaking a conditionally convergent
integral for an absolutely convergent integral.) The present work is enough to remind us of the need
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The wave–vortex duality just indicated stems from the relation between P and the
Kelvin circulation for a general material circuit – see (6.3) below – more specifically
the relation between PH and the Kelvin circulation for material circuits lying on
isentropes or stratification surfaces. Those relations are most clearly exhibited by the
GLM theory, via its exact definitions of P and PH (Andrews & McIntyre 1978a,
hereafter AM78a; also Gjaja & Holm 1996; Bühler 2000, hereafter B00). The exact
definitions account for the contributions to the Kelvin circulation from correlations
between wave-induced velocity fluctuations and undulations of the material circuit. In
the case of large-scale atmosphere–ocean dynamics the effective forces associated with
PH are therefore related to distributions of Rossby–Ertel potential vorticity (PV), and
to the balanced, vortical part of the velocity field derivable from PV inversion (e.g.
Hoskins, McIntyre & Robertson 1985, 1987), which to a first approximation is just
the layerwise-non-divergent part. It is important to note, therefore, that there is no
reason to expect there to be such a thing as a PH -associated force straightforwardly
acting on the part of the velocity field not derivable by PV inversion, which to a first
approximation is the layerwise-divergent, layerwise-irrotational part.

The latter part is, however, involved in mediating the remote recoil effects. It does so
in subtle and complicated ways that depend on the precise parameter regime and on
the particular fluid domain geometry and boundaries, or conditions at infinity, as the
case may be. It usually involves an unbalanced far field, consisting of fast, large-scale
acoustic-gravity-wave motions of amplitude O(a2), part of a far-field recoil of the
kind discussed in § 4.4 of BM03. Far-field recoil is the reason why incompressible flow
models exhibit conditionally convergent momentum integrals (e.g. Batchelor 1967,
p. 529; Bühler & McIntyre, in preparation).

For the strongly stratified, near-incompressible flows of interest we have the
aphorism, then, that pseudomomentum is simple and momentum complicated. More
precisely, the PH + I budget of layerwise-two-dimensional vortical flow is simple
(though implicitly involving remote recoil, of the kind exemplified by the vortex-core
recoil already mentioned); and the accompanying momentum budget is complicated
(involving further varieties of remote recoil including the far-field recoil). The relative
simplicity of the PH + I budget is important because it is the balanced, vortical
flow, and the vortex dynamics, that usually matters most in atmosphere–ocean
modelling, for all kinds of reasons from the accuracy of weather forecasting to the
correct representation of greenhouse-gas transport. Thus the representation of gravity-
wave effects in atmosphere–ocean models, the so-called ‘gravity-wave parametrization
problem’, needs above all to respect the PH + I budget and vortex-core recoil effects,
while leaving the numerical model to handle the momentum budget along with the
model-specific, boundary-sensitive far-field recoil effects.

The plan of the paper is as follows. In § § 2–4 we establish the needed ray-theoretic
notation and formalism, showing in § 2 the relevance of passive-tracer behaviour, in
§ 3 the vulnerability of internal waves to capture, and in § 4 the near-inevitability of
wave dissipation after capture. In § 5 we briefly review the seminal work of B69 and
show how it leads to the notion of wave–vortex duality, in a simple non-rotating
case, and in § 6 we exhibit the underlying exact GLM results, which point toward
generalizations including the effects of rotation. In § § 7–8 we derive the conservation
theorem that justifies the notion of a PH + I budget, and show how it helps make

to keep all three quantities – impulse, momentum, and pseudomomentum – sharply distinguished
from one another.
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sense of various cases including the peculiar wave–mean interactions and PH evolution
during wave capture, taking account of the evolution of pseudomomentum density
and its curl according to ray theory. The type of vortex-core recoil analysed in BM03,
involving an effective Magnus force though not wave capture, fits effortlessly into
the same framework. Indeed, the PH + I conservation theorem shows that essentially
the same vortex-core recoil phenomena will arise in any problem in which waves
refract past a vortex, whether or not weak-refraction asymptotics apply as in BM03.
Dissipative effects are discussed in § 9, where we show that in a certain sense wave
capture and wave dissipation are equivalent, for wave–mean interaction purposes.
In § 9.2 we point out one implication of that equivalence, in the form of a serious
caveat regarding recent attempts to estimate the secondary gravity-wave generation
caused by dissipating wavepackets. Such estimates will be much too high in some
cases, essentially through the neglect of missing forces prior to the onset of wave
dissipation. In § 10 an example involving a single vortex pair and a single wavepacket
is discussed in detail, to further illustrate the points made in the paper. Concluding
remarks are offered in § 11.

2. Analogy between wavecrests and passive tracers
As a prelude to analysing wave capture for internal waves, and for any other wave

type, we recall the well-known partial analogy between the ray-tracing equations and
the equations governing the evolution of a passive tracer. This emerges most simply
in a generic three-dimensional setting.

The ray-tracing equations govern the phase and amplitude evolution of an O(a)
linear wavepacket or wavetrain with slowly varying amplitude a(x, t) � 1 and rapidly
varying phase function Θ(x, t) such that a typical wave field is given by a(x, t) exp(iΘ),
with real parts understood. Defining the local wavenumber vector k and frequency ω

via

k ≡ +∇Θ, ω ≡ −Θt (2.1)

and introducing the absolute frequency function

Ω(k, x, t) = ω̂ + U · k, (2.2)

we have Hamilton’s equations for the evolution of x = (x, y, z) and k = (k, l, m) as
functions of time along group-velocity rays, i.e. wavepacket trajectories,

dgx
dt

= +
∂Ω

∂k
and

dgk
dt

= −∂Ω

∂x
. (2.3)

Here U = (U, V, W ) is the O(1) background velocity field on which the O(a) waves
propagate and ω̂ is the intrinsic frequency, i.e. the frequency intrinsic to the wave
dynamics, the Doppler-shifted frequency seen from a local frame moving with velocity
U . As already indicated we shall be especially interested in strongly stratified, layer-
wise-two-dimensional, layerwise-non-divergent flows satisfying

U = (U, V, 0) and
∂U

∂x
+

∂V

∂y
= 0, (2.4)

where z is vertical; but these restrictions will not be needed until the next section.
The intrinsic frequency ω̂ always depends on k, and both ω̂ and U may in addition

depend slowly on x and t . The absolute group velocity cg = (ug, vg, wg) is

cg =
dgx
dt

= ĉg + U, (2.5)
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where the intrinsic group velocity ĉg ≡ ∂ω̂/∂k measures wavepacket propagation
relative to the moving fluid background. The time derivative along a ray is equivalent
to the operator

dg

dt
≡ ∂

∂t
+ cg · ∇ =

∂

∂t
+ (ĉg + U) · ∇ (2.6)

acting on slowly varying functions of (x, t).
For simplicity, though this is not essential, we will assume that ω̂ depends on k

only, so that the explicit dependence of Ω on x and t is contained entirely in the
background flow U(x, t). Equation (2.3b) then becomes

dgk
dt

= −(∇U) · k ⇔ dgki

dt
= −∂Uj

∂xi

kj (2.7)

where summation is understood; note that k contracts with U and not with ∇. This
equation describes the rate of change of k = ∇Θ due to mean-flow refraction, i.e. due
to the differential advection of the phase lines Θ = const. by the background flow U .†
Let us compare (2.7) to the evolution equation for the gradient ∇φ of a passive tracer
φ(x, t) advected by U ,

Dtφ ≡
(

∂

∂t
+ U · ∇

)
φ = 0 ⇒ Dt (∇φ) = −(∇U) · ∇φ, (2.8)

where again ∇φ contracts with U and not with ∇. Comparing (2.7a) with (2.8b),
we see that the only difference is that between dg/dt and Dt , the time derivatives
following wavepacket and material particle respectively:

dg

dt
− Dt = (ĉg · ∇). (2.9)

Hence k behaves like the gradient of a passive tracer to the extent that the difference
between these two time derivatives does not matter, and to the extent that −(∇U) · k
dominates any other terms that might arise in (2.7) from reintroducing dependence
of ω̂ upon x. Under suitable circumstances, therefore, the well-studied properties of
passive advection can be relevant to dispersive wave dynamics. For instance, in the
passive advection case it is well known that |∇φ| grows exponentially in time, on
average, in the Batchelor random-straining regime, in which isotropic statistics are
assumed along with a scale separation between the length scales of U and φ. Haynes &
Anglade (1997) find similar behaviour in a scale-separated random-straining model
for velocity fields of the anisotropic form (2.4). Could the same exponential growth
be characteristic of the evolution of |k| , given that the relevant scale separation is
already implied in the ray-theoretic or slow-variation assumption?

As pointed out by BS93, the answer is yes provided that |ĉ| decreases as |k| increases,
as is true, in particular, of all internal gravity, inertia and Rossby waves and their
hybrids. Then the analogy between ray-tracing and passive advection will tend to
reinforce itself, becoming increasingly accurate as |ĉ| and |dg/dt − Dt | decrease. In
such cases, therefore, there is scope for wave capture to occur, with its signature of
exponentially large |k|. From here on we denote |k| by κ .

† The wave phase Θ moves with the phase velocity kω/|k|2. However, for the evolution of k = ∇Θ
only the gradient of U matters.
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3. Wave capture for internal waves
Internal inertia–gravity waves are susceptible to wave capture (J69, BS93) because

of the form of their intrinsic dispersion relation,

ω̂2 = f 2 + (N 2 − f 2)
k2

H

κ2
, κ2 = k2

H + m2, k2
H = k2 + l2, (3.1)

alternatively

k2
H

m2
=

ω̂2 − f 2

N2 − ω̂2
, (3.2)

where f > 0 is the Coriolis parameter and N > 0 the buoyancy frequency, both
assumed constant. Prandtl’s ratio f /N is typically small in most of the atmosphere,
roughly 10−2, and more variable but still usually well below unity in the oceans. The
Boussinesq approximation, well justified for large m2, has been made. We see that ω̂

depends only on the ratio kH/m of horizontal to vertical wavenumber, in turn making
it clear on dimensional grounds that the intrinsic group velocity ĉg = ∂ω̂/∂k must be
inversely proportional to κ for fixed ω̂. Explicitly, the components of ĉg are

(ûg, v̂g) =
(k, l)

kH

N2 − ω̂2

ω̂κ

√
ω̂2 − f 2

N2 − f 2
and ŵg = −sgn(m)

ω̂2 − f 2

ω̂κ

√
N2 − ω̂2

N2 − f 2
,

(3.3)
so that

|ĉg|2 =
(N 2 − ω̂2)(ω̂2 − f 2)

ω̂2κ2
, (3.4)

confirming the inverse proportionality of ĉg to κ and the possibility of wave capture.
With U of the form (2.4), the background velocity gradient tensor is

∇U ≡

Ux Vx Wx

Uy Vy Wy

Uz Vz Wz

 =

Ux Vx 0
Uy −Ux 0
Uz Vz 0

 (3.5)

say, where suffixes denote partial derivatives and where, for ray theory to be consis-
tently applicable, we require large Richardson number,

Ri ≡ N2/
(
U 2

z + V 2
z

)
� 1. (3.6)

Notice that the evolution of the horizontal wavenumber vector kH = (k, l) decouples
from that of the vertical wavenumber m. Thus (2.7) splits into the two subsystems

dg

dt

(
k

l

)
= −

(
Ux Vx

Uy −Ux

)(
k

l

)
and

dg

dt
m = −Uzk − Vzl, (3.7)

which can be studied in sequence.
Generically, Ux etc. are functions of time along the ray. For the sake of simplicity, we

now neglect this time-dependence. This is a severe simplification and we hope to report
later on work that goes beyond it, following the Haynes & Anglade work already cited.
Here we restrict ourselves to a locally steady linear flow U =U0 + Uxx + Uyy + Uzz

and V = V0 + Vxx −Uxy + Vzz, where (x, y, z) are measured from the starting location
of the ray at t = 0, and Ux etc. are all taken to be constant.

The evolution of kH may be contrasted with the evolution of a material line
segment initially coincident with kH , so that one can imagine the tip of the line
segment moving with the local velocity field (U − U0, V − V0), relative to the starting
location x = (0, 0, 0). The curl Vx − Uy acts equally on both objects: it rotates their
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(a) Hyperbolic D > 0 (b) Parabolic D = 0 (c) Elliptic D < 0

Figure 2. Generic contours of horizontal stream function ψ = − αxy + 0.5γ (x2 + y2) with
positive α and γ in principal strain coordinates such that Vx + Uy = 0, D = α2 − γ 2. (For
non-zero Vx + Uy and Ux such coordinates are obtained by a rotation through an angle
0.5 arctan((Vx + Uy)/(2Ux)).) Also indicated are captured wavepackets at the orientation of the
growing eigenmode in the first two cases and in that of maximal transient amplification in the
third, elliptic case. The large arrows indicate kH . (a) A hyperbolic case (γ = 0.5α) similar to
that in figure 1 (in which γ = 0). If γ > 0 then the axis of extension is turned counterclockwise
by 0.5 arcsin(γ /α) whilst the axis of contraction is turned clockwise by the same angle. With
increasing γ the strain axes close like a pair of scissors. The advected wavecrests align
with the extension axis; and the growing horizontal wavenumber vector kH , which is always
perpendicular to the crests, becomes perpendicular to the extension axis. (b) The scissors shut in
the parabolic or simple shear case γ = α. (c) An elliptic case (γ = 1.5α). The ellipses have aspect
ratio

√
(γ +α)/(γ − α), which equals the maximum transient amplification factor for |kH (t)|.

components by (Vx − Uy)/2 radians per unit time around the z-axis. However, the
layerwise-irrotational strain flow, which is determined by Ux = −Vy and Uy +Vx , acts
oppositely on kH and the line segment: the tip of the kH vector behaves like the tip
of the line segment but with the sign of the irrotational strain reversed. This is a
consequence of k being the gradient of a scalar, Θ; in modern geometric language, k
is a 1-form rather than a 1-vector.

Most important for our purposes is the long-time behaviour of kH (t), which is
governed by the exponential stretching rates given by the matrix eigenvalues ±

√
D,

where D is the determinant U 2
x + VxUy , i.e.

D = U 2
x +

(
Vx + Uy

2

)2

−
(

Vx − Uy

2

)2

. (3.8)

Note that a non-zero curl always diminishes the stretching rate. As illustrated in
figure 2(a), if D > 0 then the streamlines are hyperbolic and there is a wavenumber
eigenmode that grows exponentially in time (J69) with stretching rate

√
D. The

growing eigenmode is excited by almost all initial conditions; asymptotically kH (t) ∝
(−Vx, Ux +

√
D) exp(

√
D t). This is the case of wave capture.

If D = 0 (figure 2b) then the flow is a parallel shear flow with a linearly growing
wavenumber, such that asymptotically kH (t) ∝ (−Vx, Ux) |Vx − Uy | t , i.e. classical
critical-layer behaviour. If D < 0 (figure 2c) then the streamlines are closed ellipses,
implying that the wavenumber evolution is bounded, though temporary amplification
can still occur, up to a factor equal to the aspect ratio of the ellipse. For D � 0 and
for almost all initial kH (0), the asymptotic orientation and growth rate of kH depend
solely on ∇U . In other words, we have a robust behaviour in which the wavenumber
vector of a captured wavepacket forgets about the initial conditions at large time, and
asymptotically points in a direction determined by the local velocity gradient alone.
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We now consider the evolution of the vertical wavenumber m in the case D > 0,
which features exponential growth of kH and therefore κ , with stretching rate

√
D.

Turning to (3.7b) we see that m will also exhibit exponential growth at large time,
unless it so happens that the right-hand side of (3.7b) is zero for the growing
eigenmode in horizontal wavenumber, implying zero vertical shear in that direction.
Specifically, at large time

m(t) = −Uzk(t) + Vzl(t)√
D

+ O(1), (3.9)

where k(t) and l(t) correspond to the growing eigenmode, kH ≡ (k, l) ∝
(−Vx, Ux +

√
D) exp(

√
D t). For a captured wavepacket we therefore have the scaling

relation

|kH/m| ∼ H/L (3.10)

in order of magnitude, if H, L are vertical and horizontal length scales characteristic
of the U field. In the real atmosphere we typically have H/L ∼ f /N . If for the sake
of argument we take |kH/m| =H/L = f /N precisely, in the wave-capture limit, then
from (3.2)

ω̂(t)−2 → 1
2
(f −2 + N−2); hence ω̂(t)2 → 2f 2 (3.11)

if we further approximate using N2 � f 2. It is noteworthy that values of ω̂ close to f

appear to be commonplace in the oceans and the atmosphere (e.g. Garrett & Munk
1975; Polzin 2004; Fritts & Alexander 2003 and references therein), where for long
data records the observed wave energy spectrum typically peaks at or near f , so
ubiquitous wave capture would not, of itself, greatly distort the frequency spectrum.

It may be anticipated that the robustness of the wave-capture scenario will persist
when the neglected time-dependence of the mean-flow gradient ∇U along rays is
restored and taken into account. By virtue of the passive-tracer analogy and the results
of Haynes & Anglade (1997), we may reasonably hypothesize that the exponential
straining of the wavenumber vector components will typically be slowed down but
not eradicated – that is, capture will typically be delayed but not prevented – and
that the scaling relation (3.10) will tend to persist.

4. Wave amplitude evolution
Before turning to the nonlinear mean-flow response and recoil effects we need to

consider the amplitude evolution during wave capture. We show that the exponentially
increasing amplitudes rapidly overtake any reasonable wave-breaking thresholds.

The wave amplitude a along non-intersecting rays is governed by the standard
ray-theoretic equation for wave action A per unit mass at O(a2) (e.g. Bretherton &
Garrett 1968; Whitham 1974), which for the Boussinesq system is

∂A

∂t
+ ∇ · (Acg) =

u′ · F′

ω̂
⇔ dgA

dt
+ A∇ · cg =

u′ · F′

ω̂
. (4.1)

Here A= E/ω̂ , and

E = 1
2
(|u′|2 + b′2/N2) = |u′

|||2, (4.2)

the Eulerian-mean wave energy per unit mass, the overbars denoting averages over
a wave period at constant x , and u′

|| the projection of u′ on to the vertical plane

of k. The fluctuating body-force field F′ will be taken to be zero, making A a
conserved density, except in cases of slow wave generation or dissipation (§ 9), where
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F′ has magnitude O(aµ) with µ � 1 characterizing slow variation. The other symbols
are u′ = (u′, v′, w′), the O(a) wave velocity, and b′, the O(a) disturbance buoyancy
acceleration.

Now the non-dimensional amplitude a of a locally plane wave can conveniently be
defined as the maximum vertical shear of the horizontal wave velocity u′ parallel to
kH divided by the buoyancy frequency N . For example, in the case k = (k, 0, m) the
amplitude would be

a =
|u′

z|max

N
. (4.3)

This definition of a has the advantage of flagging the two most relevant wave-
breaking thresholds with the same order-of-magnitude criterion a ∼ 1, to within a
factor 2, across the whole frequency range f � ω̂ � N implied by (3.2) (e.g. McIntyre
2003, § 11). These are the thresholds for gravitational convective instability and for
Kelvin–Helmholtz vertical shear instability. Weaker, slower instabilities with a � 1
are also possible (e.g. Hasselmann 1967; McEwan 1971; Sonmor & Klaassen 1997).
For the geophysically interesting case N 2 � f 2, the amplitude a is related to A by

a2 = Aκ2 2ω̂(N 2 − ω̂2)2

N 6
; (4.4)

so knowledge of A and k implies knowledge of a.
During wave capture, the density A becomes approximately constant along a ray

if dissipation is negligible, because of the tendency to passive-tracer behaviour. For
the ray divergence ∇ · cg = ∇ · ĉg by (2.4); also, by assumption, the intrinsic group
velocity ĉg varies by only a negligible amount across the wavepacket (as also assumed
in § 3.1 of B69). Therefore |∇ · ĉg| is a small quantity to begin with, even before
capture. During capture |ĉg| decays exponentially, whilst spatial derivatives across the
footprint of the strained wavepacket grow at most at the same exponential rate. This
means that the typical magnitude of |∇ · ĉg| is at most constant and therefore remains
small by assumption. With no dissipation, (4.1b) has zero right-hand side and we are
left with dgA/dt ≈ 0, as anticipated.

With constant A but exponentially growing κ we see from (4.4), with f � ω̂ <N ,
that the wave amplitude a must also grow exponentially and must overtake all wave-
breaking thresholds unless other dissipation mechanisms intervene. Indeed, with the
scaling (3.11) we obtain

a2(t) → Aκ(t)2
2

√
2f

N2
→ A

√
2f

|ĉg(t)|2
(4.5)

for the asymptotic behaviour of a, confirming that the exponential decay of |ĉg| goes
hand in hand with the exponential growth of a at the same rate.

In summary, wave capture must lead to wave dissipation in one way or another, with
exponential rapidity. As hinted in the Introduction, however, we need to consider what
happens before and during wave capture if we are to understand the recoil effects.

5. Nonlinear mean-flow response and wave–vortex duality
Linear O(a) waves produce a nonlinear mean-flow response at O(a2), the topic

usually dealt with by small-amplitude wave–mean interaction theory. Using that
theory, the joint evolution of waves and mean flow can be studied in great detail.
Laboratory experiments show that this can be a good qualitative guide even for large
wave amplitude, which usually defies detailed theoretical analysis. The extension to
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(a) (b)

Figure 3. Illustration of wave–vortex duality (schematic only, plan view). (a) A wavepacket
on an isentrope together with streamlines indicating the return branches of the (horizontal)
Bretherton flow. As in figure 1, the arrow indicates the direction and magnitude of pH . (b) A
vortex pair on the same isentrope with qualitatively the same return flow. The shaded areas
indicate non-zero PV values with opposite signs.

large amplitude is all the more plausible if we use the GLM theory, in which certain
key results are formally valid at arbitrary wave amplitude a, as noted in the next
section.

Another important key is the seminal work of B69, in which the mean-flow
response to a propagating wavepacket of internal waves is computed in the ray-
tracing regime, for f =0. The result is sketched in figure 3(a). The wavepacket
is surrounded by a horizontal, layerwise-two-dimensional, layerwise-non-divergent
dipolar return flow, like that of the ordinary two-dimensional vortex pair sketched in
figure 3(b), with velocities falling off as the inverse square of distance. For convenience
we call the layerwise-two-dimensional O(a2) dipolar flow indicated in figure 3(a) the
Bretherton flow of the wavepacket; the part of the flow outside the wavepacket
will also be called the wavepacket return flow. In B69 the O(a2) velocity field was
computed in terms of the usual Eulerian-mean velocity u, defined by averaging over
a wave period at fixed x . It was pointed out in B69 that the Kelvin impulse of
the Eulerian-mean flow u in figure 3(a) is formally well defined, by an absolutely
convergent volume integral – unlike the momentum – and that in the ray-theoretic
approximation the impulse of u is just equal to the packet-integrated horizontal
pseudomomentum. That is, B69 showed that∫ ∫ ∫

(y, −x, 0)

(
∂v

∂x
− ∂u

∂y

)
dx dy dz = PH ≡

∫ ∫ ∫
pH dx dy dz (5.1)

where pH is the horizontal projection of the pseudomomentum density p, with p itself
given in the ray-theoretic approximation by the standard formula

p =
E

ω̂
k = Ak. (5.2)

On the left of (5.1) the impulse integral is absolutely convergent, essentially because
the integrand has compact support. To sufficient approximation, the integrand is zero
at altitudes z above and below the wavepacket. At the intervening z values, the return
flow is layerwise-irrotational outside the wavepacket implying (∂v/∂x − ∂u/∂y) ≡
ẑ · ∇ × u = 0 there. The entire Bretherton flow, inside and outside the wavepacket, is
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layerwise-non-divergent,

∂u

∂x
+

∂v

∂y
= 0, with w = 0. (5.3)

Bretherton’s result (5.1) follows at once from compactness of the wavepacket, which
allows us to write ∫ ∫

pH dx dy =

∫ ∫
(y, −x, 0) (ẑ · ∇ × pH ) dx dy (5.4)

using integration by parts, together with the relation

ẑ · ∇ × u = ẑ · ∇ × pH (5.5)

which again holds to leading order within the ray-theoretic approximations. We omit
Bretherton’s derivation of this last result (5.5) since it has an exact counterpart in the
GLM theory, (6.6) below, whose simple derivation is recalled at the end of § 6.

The relation (5.5) and its exact GLM counterpart (6.6) form the basis for the idea
of wave–vortex duality already mentioned. Each of the two coherent structures in
figure 3 can be understood in terms of vorticity inversion, the sole difference being
that the effective vorticity field to be inverted is curl p, more precisely ẑ · ∇ × p ,
= ẑ · ∇ × pH , on the left of the figure, and the ordinary vorticity ẑ · ∇ × u on the right
of the figure.

Of course a wavepacket is not the same thing as a vortex pair. The two structures
have different propagation velocities. The significance of wave capture, not considered
in B69, is that it makes the difference vanish for all practical purposes. This is further
discussed in § § 7.5 and 9.1. So the idea of wave–vortex duality involves not only the
similarity between the two structures in figure 3, but also the fact that wave capture
can, in effect, turn a wavepacket into a vortex pair whether or not wave breaking or
other dissipative processes have intervened.

Before proceeding, we remark that the Bretherton flow supplies us with one of the
missing pieces of the remote-recoil jigsaw. If figure 3(a) is superposed on figure 1(a),
we see that there is an O(a2) advective momentum flux systematically importing
positive x-momentum into the square region shown, through correlations between
the two superposed velocity fields, namely the O(a2) Bretherton flow and the O(1)
straining flow.† The local, differential form of the PH + I conservation theorem, (7.9)
below, will show that a similar though not identical statement holds for the flux of
Kelvin impulse.

6. Circulation, PV, and the exact form of (5.5)
We now recall some theory that is fundamental to the wave–vortex duality concept.

It is also needed to motivate the appropriate definition of Kelvin impulse.

† The jigsaw has further pieces, of course, including those known from classical impulse theory
(e.g. Batchelor 1967, pp. 519, 529): in the case of figure 1(a) the rate of change of momentum
within the square region shown is only half the advective rate of import, the difference being
accounted for by the rate of export of x-momentum via an O(a2) horizontal dipolar pressure field
(the missing ingredient in the result previously quoted from Donnelly 1991). A similar dipolar
pressure field is involved in the inner part of the far-field recoil discussed in § 4.4 of BM03. For
reasons of symmetry, the same partitioning between momentum tendencies and advective and
pressure-mediated momentum-flux contributions is found for a circular region, though in general
the partitioning depends on the shape of the region considered, as is typical of problems involving
conditionally convergent integrals. Further discussion is given in our paper in preparation.
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As in other problems of wave–mean interaction theory, the key is to recognize the
importance of the Lagrangian conservation laws for ideal-fluid flow, whose averaged
counterparts appear in the GLM theory. Formally, these averaged conservation laws
are valid at finite wave amplitude a but in practice one usually reverts to O(a2)
accuracy, as will for the most part be done in the next section. For simplicity we
continue to neglect the background rotation f , as in B69, returning to f 
= 0 in § 8.

The Lagrangian conservation laws in question are Kelvin’s circulation theorem
(whose importance for wave–mean problems was recognized in Rayleigh’s Theory
of Sound, 1896) and the concomitant potential-temperature and potential-vorticity
theorems. For the ideal non-rotating, stratified flows under consideration, Kelvin’s
circulation theorem states that ∮

C
u · dx = constant, (6.1)

where C is any closed material loop lying on an isentrope or stratification surface, that
is, a surface of constant specific entropy or potential temperature θ , with Dθ/Dt = 0.
The isentropes are material surfaces moving with velocity u.

In the GLM theory (AM78a, b; for further developments see also Gjaja & Holm
1996; Bühler & McIntyre 1998, hereafter BM98; and B00), the material invariance
of θ is inherited by the Lagrangian-mean specific entropy θ

L
. Thus we have in

buoyancy-acceleration units

θ = b(x, t) + N2z,
Dθ

Dt
= 0; ⇒ θ

L
= b

L
+ N2z, D

L
θ

L
= 0, (6.2)

with no restriction to small b, so that variable background stratification is now
included. Here D

L
= ∂/∂t + uL · ∇, the advective derivative based on the Lagrangian-

mean (i.e. particle-following mean) velocity uL.† This implies that the mean isentropes
or constant-θ

L
surfaces move with velocity exactly equal to uL. There is an inherited

mean-circulation theorem ∮
CL

(uL − p) · dx = constant, (6.3)

which is exact provided that the exact GLM definition of p is used (AM78a, eq. (3.1)),
with CL a closed loop moving with velocity uL and lying on a mean isentrope.
Importantly, the loop is advected with velocity uL but the mean circulation is formed
from velocity uL − p.‡ Similarly, material invariance of the PV, meaning the exact
Rossby–Ertel potential vorticity, Q say, is inherited by its Lagrangian mean Q

L

(AM78a, eq. (2.22)); and again we have advection by uL but a vorticity factor formed

† For small-amplitude propagating internal gravity waves uL ≈ u to sufficient accuracy, where
u is the usual Eulerian mean flow defined by averaging over a wave period at constant x. This is
because there is no Stokes drift at leading order for these waves, even for a finite-amplitude plane
wave, which in the Boussinesq system is an exact solution. Indeed B69 derived an approximate
version of (6.3) based on (5.2) and on u. However, we will continue to use uL in order to stress
the more general validity of (6.3) and (6.4) for other problems, and to prepare for the generalized
definition of Kelvin impulse in § 7.

‡ As is now well understood, the appearance of twin velocity fields or ‘velocity splitting’ is an
inescapable consequence of a flow averaging scheme, or any other procedure such as symplectic
balancing or symplectic numerics, that preserves material invariance while suppressing some aspect
of the structure, such as, in the present case, small-scale wave structure (e.g. Gjaja & Holm 1996;
McIntyre & Roulstone 1996).
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from uL− p. In fact, consistently with (6.3), we have

Q
L

= ρ̃−1∇θ
L· ∇ × (uL − p) and D

L
Q

L
= 0. (6.4)

Here ρ̃ is the density satisfying the exact GLM mass-conservation relation

∂ρ̃/∂t + ∇· (ρ̃ uL) = 0. (6.5)

As discussed in § 4 of AM78a, ρ̃ is a mean (non-fluctuating) quantity, though not
equal to ρL in general. (Remarkably, not only (6.5) but also the first of (6.4) holds,
with suitable initialization, even for flows subject to arbitrary body forces F, provided
that Dθ/Dt = 0 for all t (BM98).) Rotating counterparts of the above are noted at
the end of § 8.

Now in Bretherton’s problem the initial state is undisturbed and the PV is exactly
zero everywhere. Therefore (6.4) implies that

n̂L · ∇ × uL = n̂L · ∇ × p, (6.6)

where n̂L = ∇θ
L
/ |∇θ

L|, the unit normal to a mean isentrope. This is the exact GLM
counterpart of (5.5). The unit vector n̂L becomes vertical in the limit of infinitely
strong stratification, recovering (5.5).

7. PH + I conservation with and without mean-flow refraction
7.1. Preliminaries

Our aim in this section is to extend Bretherton’s problem (B69) to cases in which the
wavepacket is refracted and possibly captured by the mean flow. In particular, we
seek a generalization of the relation between horizontal pseudomomentum and Kelvin
impulse indicated by Bretherton’s result (5.1). The key is to replace the left-hand side
of (5.1) by the GLM version suggested by the simplicity of (6.4) – that is, the vorticity
used in the definition of the impulse is ∇ × (uL − p) rather than ∇ × uL or ∇ × u .

Before proceeding we should sound one note of caution. Unlike the GLM relations
displayed in § 6, the relation between momentum and Kelvin impulse holds only in the
strong-stratification limit underpinning (5.3) and (5.5). In fact generalization of the
Kelvin impulse concept to less restrictive parameter regimes is not straightforward,
for subtle reasons related, in part, to the limitations inherent in the notions of
balanced flow and PV inversion. More specifically, there is an expectation that
balanced flows will not themselves precisely conserve even momentum, let alone
impulse (McIntyre & Norton 2000), because of the ubiquity of the weak Lighthill
radiation, or spontaneous-adjustment emission, of inertia–gravity waves by unsteady
vortical motion – yet another aspect of wave–mean and wave–vortex interaction
problems and, in the present context, another aspect of the far-field recoil effects. In
the less restrictive parameter regimes there are, therefore, added layers of complication
within the aphorism that “momentum is complicated”.

So it is at present a matter of speculation how far the impulse concept can
usefully be generalized. We content ourselves here with returning for the most part
to the strong-stratification limit and the ray-tracing approximations, with f =0 in
this section and f 
= 0 in § 8. We can then use the concept of impulse in the original
Kelvin form, apart from using ∇ × (uL − p) instead of ∇ × u, allowing everything to
be made analytically clear in a simple way.
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7.2. The PH + I conservation theorem

Assuming ideal-fluid flow in the strong-stratification limit, and remembering the
absence of Stokes drifts in plane internal waves, we can replace (5.3) by their GLM
counterparts

∇H · uL = 0 with wL = 0 (7.1)

and take the mean isentropes θ
L
= const. to be horizontal planes. Here ∇H is the hori-

zontal projection of ∇. Given the pH field, the mean flow uL is then fully determined
by the circulation integrals (6.3) on horizontal z-surfaces, or equivalently by the
horizontal distributions of the material invariant qL ∝ Q

L
:

qL = ẑ · ∇ × (uL − pH ); D
L
qL = 0. (7.2)

Far-field recoil effects have been pushed out of sight, to infinity. In components, we
have

∂uL

∂x
+

∂vL

∂y
= 0 and

∂vL

∂x
− ∂uL

∂y
= qL + ẑ · ∇ × pH , (7.3)

generalizing (5.5), hence applying both to the Bretherton problem qL ≡ 0 and to its
extensions to arbitrary wavefields and vortices.

If we now define the impulse I and its density i by

I(t) =

∫ ∫ ∫
i(x, t) dx dy dz where i = (y, −x, 0) qL, (7.4)

then because D
L
qL = 0 we have D

L
i = (vL, −uL, 0) qL. A little manipulation, using

(7.1) and the definition of the horizontal Kronecker delta �ij with �i3 =�3j = 0, puts

this equation for D
L
i into conservation form apart from a term reminiscent of the

right-hand side of (2.7):

∂ ii

∂t
+

∂

∂xj

{
iiu

L
j + uL

i uL
j −

(
1
2
|uL|2 − uL·pH

)
�ij − pHiu

L
j

}
=

∂uL
j

∂xi

pHj (i = 1, 2). (7.5a)

Indeed, (2.7) with (4.1) and (5.2) implies

∂pHi

∂t
+

∂

∂xj

{
pHiĉgj + pHiu

L
j

}
= −

∂uL
j

∂xi

pHj (i = 1, 2), (7.5b)

for non-dissipative wave motion, correct to O(a2) since U = uL + O(a2). By comparing
the right-hand sides we see, therefore, not only that pH + i is a conserved density
for non-dissipative motion, but also how the individual rates of change of pH and i
are related to wave propagation and horizontal refraction. For instance, it is the
source–sink term −(∂uL

j /∂xi)pHj that accounts for the exponential rate of increase of
the packet-integrated pseudomomentum in the situation of figure 1(a).

For an arbitrary collection of wavepackets and vortices within a closed system
whose boundaries recede to infinity, all the flux terms vanish fast enough to make no
contribution at infinity. Remarkably, this remains true even for qL distributions with
non-vanishing monopole moment, since with qL, i and pH all compact or sufficiently
evanescent the only flux terms not similarly compact or evanescent are those quadratic
in uL which, even in monopolar cases, are O(r−2) where r2 = x2 + y2. So by adding
(7.5a) to (7.5b) and integrating, we have simply

PH + I = constant, (7.6)
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while the compensating individual rates of change are non-zero only when there
is horizontal refraction somewhere, hence creation or destruction of horizontal
pseudomomentum:

dPH

dt
= −

∫ ∫ ∫
(∇H uL) · pH dx dy dz (7.7)

and dI

dt
=

∫ ∫ ∫
(∇H uL) · pH dx dy dz. (7.8)

It should be remembered that I , though not its rate of change, depends on the choice
of coordinate origin when qL has non-vanishing monopole moment.

We note in passing that (7.5a) and (7.8) are valid at arbitrary finite amplitude a , if
the exact GLM definition of pH is used, though dependent on the strong-stratification
conditions (7.1)–(7.2). By contrast (7.5b), (7.6) and (7.7) have been derived correct
to O(a2) only, and depend on the ray-theoretic approximations.† We note also that
the conservation theorem does not require the constant background stratification
assumed in (2.7). It is valid for z-dependent slowly varying stratification N 2(z), since
background z-dependence affects only the z or i = 3 component of the right-hand
side of (2.7).

We may summarize everything so far by displaying the full differential form of
the conservation theorem implied by (7.5a) and (7.5b), remembering always that the
strong-stratification conditions (7.1)–(7.2) are needed (banishing far-field recoil to
infinity) and noting the interesting fact that the pseudomomentum advection terms
cancel:

∂

∂t
(pHi + ii) +

∂

∂xj

{
pHi ĉgj + iiu

L
j + uL

i uL
j − 1

2
|uL − pH |2 �ij

}
= 0 (i = 1, 2). (7.9)

The Bernoulli terms have been rewritten in an alternative form, correct to O(a2).
This is sometimes more convenient, since outside a compact qL distribution the field
uL − pH is layerwise irrotational, qL = 0, with layerwise divergence −∇H · pH .

Together with the absence of pressure terms, dictated by their absence from the
vorticity equation D

L
qL = 0, these features help to simplify the kind of argument used

in § 5.2 of BM03 – some of whose complexity stems from using momentum rather
than impulse. Specifically, if the system is open in the sense that waves can come in
from infinity, as in BM03’s problem of waves scattered by a single vortex, then the
pseudomomentum flux pHiĉgj due to wave propagation becomes significant at infinity.
Indeed (7.9) shows at once that vortex-core recoil effects of just the kind illustrated
in BM03 will be found in most problems involving waves refracting past a single
vortex. Care is still needed in estimating the other flux terms at large r , though this
task is simplified, in comparison with the momentum-based analysis of BM03 § 5.2,
by the absence of pressure terms and by the layerwise irrotationality of uL − pH .
If the wavefield is steady then in most such problems the only rate-of-change term
available to balance the net pseudomomentum flux from infinity is ∂i /∂t , integrating
to dI/dt and representing the vortex-core recoil – most simply manifested as sideways
vortex-core translation as in BM03’s problem.

† There is an exact GLM counterpart of (7.5b) – essentially the difference between (3.8) and (8.7a)
of AM78 – but its application is far less simple and will be left aside here. The main complication
is that background inhomogeneities, including ∇ρ̃ , can no longer be treated as independent of
wavefields. Finite-amplitude wave propagation involves self-refraction.
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7.3. Layerwise pseudomomentum–impulse budget

In the strong-stratification limit it is natural to consider layerwise PH + I budgets.
Continuing to assume compact or sufficiently evanescent qL and i distributions on
each isentrope, we define the layerwise Kelvin impulse, i.e. the impulse per unit altitude
z, as

J(z, t) ≡
∫ ∫

i dx dy, (7.10)

where the integral is taken over all (x, y) at constant (z, t). Then I=
∫

J dz. We see
from (7.5) that J evolves according to

∂J

∂t
= −

{
∂

∂t

∫ ∫
pH dx dy +

∂

∂z

∫ ∫
(pH ŵg) dx dy

}
=

∫ ∫
(∇H uL) · pH dx dy (7.11)

where it has been assumed that pH is also compact or sufficiently evanescent. This is
the layerwise counterpart of (7.6)–(7.8). It is useful, for instance, when considering the
effect at given altitude z of a steady wavetrain propagating from below, as with waves
generated by flow over bottom topography. With a steady wavetrain, (7.11) shows
at once that refraction by horizontal gradients of uL must lead to a non-constant
vertical flux of horizontal pseudomomentum, whose convergence at the given altitude
is equal to minus the rate of change of J at that altitude.

7.4. Extensions of the Bretherton problem

The O(a2) mean-flow response to the arrival of a wavepacket on a given mean
isentrope z = const. can be computed from (7.3). That response is initially given by
the Bretherton flow, defined as the layerwise-two-dimensional, layerwise-non-divergent
flow whose vertical curl is equal to the vertical curl of pH . In general this is not, of
course, the entire O(a2) mean-flow response after the arrival of the wavepacket. (In
this respect the situation is like that studied in BM98.) A non-uniform qL with O(1)
gradients will itself be changed at O(a2) by advection with the Bretherton flow, in
turn triggering ongoing changes in the self-induced advection of qL (the changes, in
some cases, then amplifying if the flow has positive Lyapunov exponents). But we
may still say that an O(a2) dipolar flow qualitatively like the Bretherton flow always
accompanies wavepackets.

Figure 4 shows a simple example. A wavepacket, whose Bretherton flow is shown
by the dashed streamlines, interacts with a vortex pair brought to rest in a uniform
flow, shown by solid streamlines. Other graphical conventions are as in figure 3. The
full analytical details are given in § 10 below. This is a wave-capture scenario, in
which the growth in |PH | and |pH | is compensated by the decrease in | I | and |J| due
to compression of the vortex pair by the Bretherton flow, as demanded by (7.6) and
(7.11). The vortex-core recoil – the effective force 1

2
dI/dt on each vortex core in the

absence of waves (BM03) – is directed rightwards; notice that PH and I are both
negative or leftwards. The generic features of wave capture are further discussed in
the next subsection.

To prepare for that discussion we make one more remark about the circulation
theorem (6.3). If we revert to the original assumption N2 = constant then (7.5b) holds
for i = 3 as well as for i = 1, 2. Then we have simply

d

dt

∮
CL

p · dx = −
∮

CL

∇ · (p ĉg) · dx, (7.12)
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Usy
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x = xA x = xdx > 0x = 0

Figure 4. View from above of a topographic wavepacket being captured by a blocking dipole
or vortex pair; full details are in § 10. Initially the wavepacket (not shown) is generated at
x = y = 0 and at a z value below the level depicted, with the absolute group velocity vertically
upward toward the viewer. Compression in x and stretching in y by the horizontal strain
slows the intrinsic propagation, so that asymptotically the wavepacket approaches the level
depicted while being swept toward the upwind stagnation point x = xA. The packet-integrated
pseudomomentum PH continually increases in magnitude, as suggested by the large arrows,
and does so at an exponential rate as long as the size of the wavepacket remains small relative
to background scales. The wavepacket’s Bretherton flow, likewise growing exponentially, is
indicated schematically by the dashed streamlines. That flow compresses the vortex pair on the
right, reducing the magnitude of the vortex pair’s impulse at just the rate needed to compensate
the exponential growth of |PH | as demanded by the PH + I conservation theorem.

for arbitrary mean material loops CL in three dimensions. As before, the divergence
operator contracts with ĉg . Because CL moves with velocity uL, the source–sink term
from the right of (7.5b) has disappeared. When N2 = constant, only intrinsic wave
propagation – i.e. only wave propagation relative to the fluid – can change the
pseudomomentum circulation around mean material loops. In the absence of such
propagation the three-dimensional vector ∇ × p is frozen into the flow uL in the same
way as vorticity is frozen into un-averaged incompressible flow u. This has relevance
to pseudomomentum evolution in some other classes of wave problems, including the
phonon–vortex interaction problem and its extension to roton–vortex interactions,
rotons at zero group velocity being somewhat like captured phonons.†

7.5. Generic behaviour under wave capture

We use the equations for the vertical curls of uL and pH implied by (7.2) and by
(7.12) with isentropic CL, valid even if N 2 = N 2(z). The equations are

D
L
( ẑ · ∇ × uL) = D

L
( ẑ · ∇ × pH ) = − ẑ · (∇ × (∇ · (pH ĉg))), (7.13)

where again the divergence operator contracts with ĉg . The product pH ĉg on the right-
hand side has factors with compensating growth and decay during wave capture. So
estimating the magnitude of this product requires care in general. But under the
previously discussed assumption, below (4.4), that ĉg is approximately uniform across

† Note added in proof: We should acknowledge a careless slip in BM03, where on p. 214 we
inadvertently suggested that a classical acoustic wavepacket would have a return flow. Though
correct for rotons and for slow (dispersive) phonons, it is incorrect for the classical (non-dispersive)
wavepacket.
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a wavepacket, the second of (7.13) reduces to

(D
L

+ ĉg · ∇) ( ẑ · ∇ × pH ) = 0, (7.14)

i.e. this scalar is simply advected by the absolute group velocity. During wave capture
the total displacement of the wavepacket due to the exponentially decaying ĉg is finite
and small. This allows us to argue that pH ĉg in (7.13) makes only a small contribution
during wave capture. Therefore, at the late stages of wave capture (7.13)–(7.14)
simplify to a statement that the vorticity and pseudomomentum-curl are frozen-in
separately:

D
L
( ẑ · ∇ × uL) = 0 = D

L
( ẑ · ∇ × pH ). (7.15)

A curious implication of (7.15) is that after wave capture the evolution of the mean
flow uL appears to be, in a certain sense, no longer directly affected by pH – even
though the packet-integrated pseudomomentum PH is still increasing exponentially,
as in figure 1(a), with I and J decreasing as demanded by (7.6) and (7.11). After
wave capture the layerwise-non-divergent horizontal mean flow uL is governed by the
constancy of the mean-flow circulation, the circulation of uL, around mean material
loops CL, just as it would be in the complete absence of the waves! The circulation
of pH around a loop CL that intersects the wavepacket is similarly constant in time,
allowing (6.3) to hold without the pH term. Of course this does not mean that wave
capture has gone unnoticed by the mean flow, a fact already clear from figure 4. The
circulation of pH is indeed constant after wave capture, but the value of the constant
has been changed, by the wave capture process, from the value it would otherwise
have had.

Let us look more closely at the early sequence of events. The mean flow has initially
responded to the arrival of the wavepacket by manifesting the packet’s Bretherton flow,
which flow would have disappeared again had the wavepacket immediately left the
mean isentrope under consideration. It is in this initial stage that the vertical curl
of pH gets added to the vertical curl of uL, as described by (7.3). But now that
wave capture has intervened, the wavepacket never leaves the isentrope. Hence the
Bretherton flow remains in place, persistently advecting the qL distribution on that
isentrope. Indeed since PH and pH , and therefore I and J, all have exponentially
growing rates of change, we see that there must be an exponentially growing, albeit
O(a2), mean-flow reponse arising from rearrangement of the isentropic distribution
of qL. In the example of figure 4 the two vortex cores are advected toward each
other at an exponentially increasing rate, accounting for the exponentially increasing
rate of reduction of |J|. This re-arrangement of qL will in turn change the mean
flow and its self-advection. In the case of figure 4 the vortex cores will, perhaps
counterintuitively, start moving leftward (but recall (7.4)). Such changes will then
affect the refraction of the wavepacket. Indeed, the conclusion from (7.11) is that,
ultimately, whatever else happens, the exponential surge in pH must cease because it
cannot consume more than the total impulse J available on the isentrope. Notice that
the wavepacket can interact and exchange impulse with the vortices in the fashion
familiar from elementary vortex dynamics. Indeed, the observed interaction, in which
the wave dipole is stretched in the y-direction, resembles the early stages of the
familiar ‘leap-frogging’ of vortex pairs, or vortex rings in three dimensions (e.g. § 10.4
in Saffman 1993).

So, to summarize, the exponential behaviour characteristic of wave capture in no
way contradicts the constancy of circulation remarked on below (7.15). This was
clear all along from the wave–vortex duality perspective, since (7.15) and (7.1)–(7.3)



86 O. Bühler and M. E. McIntyre

tell us that after wave capture we have nothing more than two-dimensional vortex
dynamics with the two kinds of ‘vorticity’, qL and ẑ · ∇×pH , separately frozen into the
mean flow and interacting with each other just like the ordinary vorticity in ordinary
two-dimensional vortex dynamics. The O(a2) Bretherton flow and its advective power
grows in just the same way as the flow around an ordinary vortex pair grows when the
pair is pulled apart. After wave capture the Bretherton flow has irreversibly become
part of the mean flow, for all practical purposes. We may highlight this point by
imagining ourselves somehow unable to observe the waves directly. We imagine that
only observations of the mean flow uL are available. The signature of a captured
wavepacket would then be indistinguishable from that of a vortex pair, even before
dissipative processes have intervened. This is one of the more striking aspects of wave–
vortex duality. A non-captured wavepacket, by contrast, would be detectable by its
intrinsic group velocity, which moves the location of the packet’s ẑ · ∇×pH through the
fluid, i.e. at velocities different from uL, as described by (7.14). Generically, then, one
has the two kinds of vorticity qL and ẑ · ∇ × pH moving at velocities uL and uL + ĉg ,
respectively, but adding together to determine uL via the inversion problem (7.3).

A technical caveat should be noted at this point. The wave–mean interaction theory
used above is based on a regular perturbation analysis valid for times t = O(1); so
strictly speaking the mean-flow changes it can describe are bounded by O(a2). To
fully justify the foregoing picture one must suppose that the analysis can be extended
to mean-flow changes that grow to be O(1). This supposition is reasonable provided
that the wave evolution is continually adjusted as uL evolves. Such an assumption
finds some additional support in the fact that the most crucial terms in the evolution
equations, especially the refraction term (∇H uL) · pH , have nonlinear, finite-amplitude
counterparts in the GLM theory, as can be verified from the references cited; see
footnote to § 7.2.

In § 9 we analyse post-capture dissipation. The analysis will support what is implicit
in all the foregoing, namely that, in a real sense – even though contrary to the standard
paradigm – it is the onset of wave capture rather than of wave dissipation that is
most significant in these problems.

8. Pseudomomentum–impulse budget with rotation, f 
= 0

The generalization of (6.1) and (6.3) to a frame rotating with constant angular
velocity f /2 around the ẑ-axis consists of using the absolute velocity in the circulation
integral, (8.6) below, and in the GLM definition of p (AM78a). A nonlinear GLM
treatment of the Boussinesq equations that includes a nonlinear definition of mean
potential vorticity can be found in BM98, along with the extension to the compressible
case. Here we will instead use the standard quasi-geostrophic theory, giving a leading-
order-approximate potential vorticity for small-Rossby-number rotating flows. The
small-Rossby-number scaling includes the wavepacket envelope scales. Then the
Kelvin impulse concept can be carried over to rotating problems with minor changes
only, essentially because we keep the strong-stratification conditions ∇H · uL = 0 and
wL = 0 to leading order. The quasi-geostrophic potential vorticity is f + qL where qL

is now redefined by

qL ≡ ẑ · ∇ × (uL − pH ) +
∂

∂z

(
f b

L

N2

)
, so that D

L
qL = 0 (8.1)

under geostrophic advection. Here we allow N 2 to be a function of z as is standard
in quasi-geostrophic theory. The vertical derivative will give rise to a new vertical flux
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divergence in the equation for the impulse density. The theory assumes that the mean
flow is in geostrophic balance (contrast the exceptions in BM98), which implies that,
to leading order in Rossby number,

∇H · uL = 0, wL = 0, and f

(
∂uL

∂z
,
∂vL

∂z

)
=

(
−∂b

L

∂y
, +

∂b
L

∂x

)
, (8.2)

this last representing the usual thermal wind-shear relations. The generic small-
amplitude definition of pH in (5.2) is unchanged, and so are the subsequent evolution
equations including (7.5b). The definition of the mean-flow impulse density i is also
unchanged but its flux now contains two additional terms, those displayed on the
second line of the following version of the pH + i conservation theorem, which is the
rotating counterpart of (7.9):

∂

∂t
(pHi + ii) +

∂

∂xj

{
pHi ĉgj + iiu

L
j + uL

i uL
j − 1

2
|uL − pH |2 �ij

+
f

N 2
uL

k b
L
ε3ki δ3j +

b
L2

2N2
�ij

}
= 0 (i = 1, 2; j = 1, 2, 3). (8.3)

The vertical flux of impulse represented by the first term on the second line is
analogous to the familiar vertical Eliassen–Palm flux or so-called isentropic or
isopycnic ‘form drag’ of quasi-geostrophic theory, which also quantifies the mean
momentum transport in the vertical. The horizontal flux of impulse represented by
the second term on the second line integrates out when we form the layerwise budget,
with J ≡

∫∫
i dx dy as before:

∂J

∂t
+

∂

∂z

(
f

N2

∫ ∫
(−vL, +uL, 0)b

L
dx dy

)
= −

{
∂

∂t

∫ ∫
pH dx dy +

∂

∂z

∫ ∫
(pH ŵg) dx dy

}
=

∫ ∫
(∇H uL) · pH dx dy, (8.4)

when qL, i and pH are compact or sufficiently evanescent. Since uL decays by one
further power of distance, now three-dimensional distance (x2 + y2 + z2)1/2, as does

b
L
, consistently with (8.2), the flux terms again integrate to zero over the horizontally

infinite domain – even in cases of non-vanishing monopole moment of the quasi-
geostrophic qL.

Thus, with qL and i redefined as above, the global budgets (7.6)–(7.8) hold on
just the same basis as before. Wave capture and horizontal pseudomomentum surges
are again compensated by mean-flow impulse changes, just as in the non-rotating
case f = 0. The main modification is that mean-flow changes are now governed by
(8.1)–(8.2), involving three-dimensional quasi-geostrophic PV inversion. In particular,
the Bretherton flow is now the three-dimensional geostrophic flow whose quasi-
geostrophic PV based on uL alone is equal to the vertical curl of pH . The Bretherton
flow therefore extends vertically as well as horizontally around the wavepacket, a
stack of horizontal vortex-pair flows with vertical-to-horizontal aspect ratio ∼ f /N ,
in accordance with the standard quasi-geostrophic scaling.

We note finally that the exact ideal-fluid results of (6.2)–(6.4) have rotational
counterparts (AM78a; BM98)

D
L
θ

L
= 0 (8.5)
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with circulation theorem∮
CL

(uL − p + 1
2

f × x) · dx = constant, (8.6)

and the corresponding definition and conservation theorem for PV,

Q
L

= ρ̃−1∇θ
L· { f + ∇ × (uL − p)} and D

L
Q

L
= 0. (8.7)

9. Dissipative effects
Wave dissipation can take many forms, including that of strongly nonlinear wave

breaking due to the irreversible overturning of isentropes, but clearcut theoretical
results are usually restricted to the case of weak dissipation and laminar flows. Here
we will give an account of the interplay between wave capture, dissipation, and
mean-flow changes based on weak laminar dissipation. However, to the extent that
many of our arguments are based on the exact results of § 6, and their rotational
counterparts (8.5)–(8.7), we may hypothesize that our results give a good qualitative
guide even for the case of strongly nonlinear wave breaking. The discussion applies
word-for-word whether f = 0 or f 
= 0.

9.1. Pseudomomentum dissipation and mean-flow response

Dissipative effects can enter either through a fluctuating body force F per unit
mass in the momentum equation or through diabatic heating terms in the buoyancy
equation. We will not consider heating terms here, but see BM98 for a discussion. In
the ray-tracing regime we see from (4.1) and (5.2) that dissipation adds a decay term
ω̂−1k (u′·F′) ≡ F, say, to the right of the pseudomomentum evolution equation,
where F is on average anti-parallel to p if the force is dissipative, i.e. if (u′ · F′) < 0.
So in this case F can be written as −p/τ , where τ = − E/(u′ · F′) > 0, a k-dependent
dissipation time scale that measures the attenuation of p along the ray. An exact
GLM definition of F can be found in AM78a, in terms of which the dissipative form
of the GLM circulation theorem (6.3) is (Corollary III in AM78a; also B00):

d

dt

∮
CL

(uL − p + 1
2

f × x) · dx =

∮
CL

(F
L − F) · dx. (9.1)

For momentum-conserving forces F (which derive from the divergence of a momentum
flux tensor such as that due to viscosity) it is shown in B00 that |FL| � |F| at O(a2)
for slowly varying waves. Then the last term dominates on the right of (9.1).

We now consider the balanced mean-flow response to dissipation, in the strong-
stratification limit. In place of (7.5b) we have

D
L
pH + ∇ · (pH ĉg) + ∇uL · pH =

kH

ω̂
(u′ · F′) ≡ FH , (9.2)

say. The dissipative forms of (7.2b) and (7.13) for momentum-conserving forces are

D
L
qL = − ẑ · ∇×FH and D

L
( ẑ · ∇×pH )+ ẑ · (∇×(∇ · (pH ĉg))) = + ẑ · ∇×FH . (9.3)

It follows that, in the layerwise pseudomomentum-and-impulse budget (7.11) or
(8.4), the left-hand equation is unchanged from its non-dissipative form whilst the
right-hand equation, involving horizontal refraction, acquires a horizontal integral
over −FH on its right-hand side. In this way, dissipation irreversibly transmutes
horizontal pseudomomentum into impulse.
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Locally, we observe that dissipation has the sole effect of irreversibly transmuting
the vertical curl of pseudomomentum into Lagrangian-mean potential vorticity in
(9.3). The dissipation has no effect on the uL field. This is just what was hinted at in
§ 7.5. Viewed from the wave–vortex duality perspective suggested by figures 3 and 4,
it means that dissipation transmutes the wavepacket on the left into the vortex pair
on the right. The transmutation leaves uL unchanged because, in equation (7.3) or its
quasi-geostrophic counterpart from (8.1) and (8.2), the quantity qL + ẑ · ∇ × pH stays
the same and hence the inversion problem to find uL stays the same.

The effect of dissipation is therefore solely a matter of book-keeping, in that only
the partitioning between the two terms of qL + ẑ · ∇ × pH is changed. So we have a
particularly clear counterexample to the myth that the waves necessarily give ‘their
momentum’ to the mean flow when they dissipate.

To further underline this point, one can imagine that pH and qL are time-evolved
by a sequence of alternating non-dissipative and dissipative time steps, as could be the
case in a numerical scheme based on operator splitting. During the non-dissipative
time step both qL and the vertical curl of pH are advected by uL. The curl of pH is
then, in addition, advected by ĉg . During the following, dissipative time step, both
change but in such a way that their sum stays constant in qL + ẑ · ∇ × pH . Together
with (7.1) this implies that there is no mean-flow acceleration during the dissipative
time step. (Indeed this is true whether measured by uL or by u, since Stokes drifts are
negligible.) What emerges instead is that the essential effect of dissipation is merely to
make permanent a mean-flow change that has already occurred during the preceding
non-dissipative step of the dynamics, such as the buildup of the Bretherton flow
during the arrival of a wavepacket.

9.2. Failure of the standard paradigm for secondary gravity-wave generation

The point just made is obscured in the classical wave–mean theories that led to
the standard paradigm. These assume two-dimensional, translationally or rotationally
invariant backgrounds, i.e. backgrounds that depend on two coordinates only, say
y and z, and steady wave fields whose amplitude a(y, z) and other parameters
such as wavenumbers or phase gradients likewise depend on y and z only, even
though the phase itself varies in all three directions x, y and z. In such cases the
regions of pseudomomentum dissipation and persistent mean-flow forcing necessarily
coincide, so that persistent, cumulative mean-flow changes are always associated with
pseudomomentum dissipation, as predicted by classical non-acceleration theorems
(e.g. AM78a, p. 627).

The present work has shown, however, that there are three-dimensional wave–
mean problems involving transient wavepackets, or steady wavetrains regarded as
successions of transient wavepackets, in which the standard paradigm is thoroughly
misleading. A case in point is the problem of estimating the generation of secondary,
O(a2) gravity waves by the sudden breaking of a primary, O(a) gravity wavepacket.
The problem has been addressed in the atmospheric-dynamics literature (e.g. Zhu &
Holton 1987; Vadas & Fritts 2001), using the standard paradigm. Thus, the O(a2)
wave-induced force is modelled in these studies as a horizontal body force (a) that
is localized at the wavepacket, (b) that has time scale equal to the time scale τ for
wave dissipation, and (c) that has total volume and time integral equal to the packet-
integrated horizontal pseudomomentum. Since rapid wave-dissipation events due to
wave breaking may take place during a fraction of an intrinsic wave period 2π/ω̂, the
relative shortness of the time scale τ for such events would appear to argue for better
matching to gravity-wave time scales, and stronger secondary gravity-wave generation.
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However, according to the wave–mean interaction theory presented above, there is
no reason why the actual mean-flow forcing time scale T should be equated to the
time scale τ of the wave dissipation. Indeed, it is theoretically possible to conceive
of a three-dimensional wavepacket that dissipates instantaneously at some time t0,
i.e. FH = − pH δ(t − t0) in (9.2), making τ = 0, yet generates no secondary gravity
waves at all. This is because the actual mean-flow forcing time scale T on a given
isentrope is not associated with dissipation, but rather with the prior setting-up of the
Bretherton flow on that isentrope. The actual time scale T is therefore of the order
of the non-dissipative propagation time scale of the wavepacket, i.e. of the order of
its vertical extent divided by its vertical group velocity. If dissipation operates, then
all it means is that the Bretherton flow is only partly undone if the remnants of the
wavepacket leave the isentrope under consideration. That is the lasting, irreversible
effect of wave dissipation, as discussed before.

In summary, there is no relation between the actual time scale T and the dissipative
decay time τ . One can conceive of situations where there is a link between T and τ ,
but if the concept of a slowly varying wavepacket is to make sense to begin with –
which gravity-wave observations say it often does – then the propagation time scale
T will always be large in comparison with the intrinsic wave period (B69). Overall,
this means that real secondary wave emission will tend to be much weaker than is
suggested by the assumption T ≈ τ based on the standard paradigm.

9.3. Wave capture versus dissipation

As already discussed, there is a strong similarity between wave capture and dissipation
as far as the mean-flow response is concerned. For instance, consider that a wavepacket
has arrived from below, on a given isentrope, and that therefore the Bretherton flow
at O(a2) has been set up on this isentrope. If the wavepacket were to dissipate
instantaneously at this stage, then qL would absorb the pseudomomentum curl whilst
keeping the right-hand side of (7.3) constant. Clearly, the Bretherton flow would
not change during the dissipation, as discussed above. After the wavepacket has
disappeared, the implication of (7.2) is that the vertical curl of uL is a mean material
invariant, and the flow would evolve according to such invariance together with
(7.1).

Let us now consider a situation where rapid wave dissipation is replaced by wave
capture, i.e. where wave amplitude a is so small that the final dissipative stage
is significantly postponed until well after the freezing of the group velocity. As
discussed below (7.15), during wave capture the vertical curl of pseudomomentum
becomes a mean material invariant and therefore (7.2) implies that the vertical curl
of uL itself becomes a mean material invariant, just as in the dissipative case. Indeed,
as far as the mean flow is concerned, this is precisely as if the wavepacket had
dissipated, even though the wavepacket can still carry significant O(a2) disturbance
energy. Apparently, that energy plays no further role in the mean-flow evolution.

So once again we find a peculiar similarity between wave capture and wave
dissipation: in both cases the mean flow is irreversibly changed by adding the vertical
curl of pH to that of uL and then simply evolving the vertical curl of uL via advection
by uL. In the case of dissipation, the irreversible nature of this process is overtly
on display through the changes in qL due to the vertical curl of the dissipative
mean force FH , determined by (9.3). In the case of capture, irreversibility arises less
overtly, because of the exponential straining of the wavenumber vector that renders
the vertical curl of pH a mean material invariant, as noted in (7.15). This straining
process will usually be irreversible in practice.
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Thus the main implication, especially for practical considerations involving gravity-
wave parametrizations in general circulation models for the atmosphere, is that the
eventual dissipation of a captured wave is of no consequence as far as the mean
flow is concerned. Such dissipation can be treated merely as a book-keeping exercise
in which the right-hand side of (7.3b) or its quasi-geostrophic counterpart, which is
already materially invariant, is absorbed into qL and then pH set to zero.

10. A topographic wavepacket example
We now give the full details for the example of figure 4, reverting to f = 0.

10.1. Background flow set-up and linear ray-tracing

Consider a steady background flow as sketched in figure 4 above, in the strong-
stratification limit, so that the flow-induced undulations in the background isentropes
are negligible. The flow consists of a uniform flow Us > 0 along the x-axis plus a
horizontal vortex pair located at xd > 0 and symmetric across the x-axis. The dipole
strength of the vortex pair is arranged such that the entire background flow is steady,
which is straightforward if we assume that the vertical extent of the vortex pair
is sufficiently deep to allow two-dimensional fluid dynamics to be accurate for the
background flow.† By (7.4) and (7.10), the layerwise impulse J of this vortex pair is
proportional to, and at right angles to, the distance between the vortices. It points in
the negative x-direction here.

We now consider the evolution of a small-scale wavepacket that initially propagates
vertically upwards through this background flow. For definiteness, we could imagine
that this wavepacket has initial wavenumber k0 = (k0, l0, m0) and initial absolute
frequency ω0 = 0, as if it had been generated by the flow of the surface wind U0 > 0
over corrugated bottom topography at x = y = z = 0. We assume that the initial value
of the wavenumber y-component l0 = 0, as would be the case if the topography were
corrugated in the x-direction only; and we also assume that the wavepacket is quasi-
hydrostatic in the sense that k2

0 � m2
0 and ω̂2

0 = U 2
0 k2

0 � N2. It will be verified shortly
that such a wavepacket propagates vertically upward until it begins to be affected by
the horizontal refraction.

As long as the background flow remains steady, z-independent, and symmetric
across the x-axis, it follows from the ray-tracing equations, including (2.3) and (3.7),
that

ω(t) = 0, m(t) = m0, l(t) = 0, y(t) = 0 (10.1)

hold along the wavepacket’s group-velocity ray. As l(t) = 0, we also have

ω = ω̂ + U · k = ω̂ + Uk + V l = ω̂ + Uk = 0, (10.2)

and therefore the radiation condition ŵg > 0 together with the sign convention ω̂ > 0
imply k(t) < 0 and m(t) < 0. This shows that pH points in the negative x-direction, as
indicated by the large arrows in figure 4.

With (10.2), the horizontal group velocity can be read off from (3.3) and (3.1) with
f =0, hence κ = N/U , as

ug =
dgx

dt
= U + ûg = U

ω̂2

N2
= U

U 2k2

N2
, and

dgk

dt
= −∂U

∂x
k (10.3)

† This also implies that vertical mean-flow derivatives are negligible, so in this respect the present
example differs from the generic three-dimensional scenario considered earlier and is more similar
to well-known examples of horizontal critical layers (see J69, BS93, and references in Staquet &
Sommeria 2002).
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follows from (2.7). The latter shows that |k| increases if ∂U/∂x is negative. Again
since κ = N/U we see that

k2 − k2
0 = N2

(
1

U 2
− 1

U 2
0

)
(10.4)

along the ray, where U0 ≈ Us .† Substituting this into (10.3) gives the useful relation

ug = U + ûg = U

(
1 − U 2

U 2
0

)
+

U 3k2
0

N2
. (10.5)

10.2. Wave capturing sequence

To begin with, ug � U so that the negative intrinsic group velocity in x holds the
quasi-hydrostatic wave steady against the wind U0 ≈ Us > 0. However, |k(t)| grows
exponentially because on the centreline y = 0 the mean flow U > 0 decreases with x,
which squeezes the phase lines together. Indeed, for this particular flow the x-direction
is the axis of contraction on y = 0, and therefore kH = (k, 0) is a growing wavenumber
eigenmode. Non-hydrostatic effects become more important as |k/m| grows and this
leads to a decrease in |ûg| and therefore to a growing ug > 0: the wavepacket begins
to drift to the right.

By (10.4), increasing values of |k| match decreasing background wind values U ,
which are found to the right along y =0. The intrinsic group velocity is continually
diminished until we reach the capturing regime |ûg| � U . This is easy to see from
(10.5), which implies that |ûg/U | ≈ U 2/U 2

0 and hence that perfect capture with ûg = 0
would occur at the upstream stagnation point U = 0 of the vortex pair, at x = xA, say.
Of course, the captured wavepacket would reach this point only in infinite time.‡

The exponentially growing |k| implies the growth of |pH | during wave capture.
Another view of the surge in |pH | comes from (5.4). Concomitant with the mean-flow
squeeze in x is an extension of the wavepacket in y to preserve area (apart from small
corrections due to non-zero ∇ · ĉg and ŵg). This extension in y separates the regions
of oppositely signed ẑ · ∇ × pH and thus increases the pseudomomentum content of
the wavepacket according to (5.4), at an exponentially increasing rate.

During capture the action density A is approximately constant and as ω̂ → N near
the stagnation point this implies that the energy density E = ω̂A goes to a constant
as well. The unbounded growth in k2 then implies unbounded shear w′2

x ∝ k2E,
which, as pointed out in § 4, must lead to instability and nonlinear breakdown of the
wavepacket before it reaches the stagnation point.

10.3. Mean-flow response

The O(a2) Bretherton flow is indicated by the dashed streamlines in figure 4. As
can be seen by inspection of figure 4, the advection of the background vortices by
this flow is such as to decrease the magnitude of the impulse of the background

† This could be made more quantitative by considering the limit of large xd such that the
two-dimensional flow due to the vortex pair, which decays with inverse square distance from the
location of the vortex pair, is negligible at x = y = 0.

‡ Interestingly, the JWKB approximation underlying ray theory appears to remain valid as the
wavepacket approaches xA. Near xA the background flow U on y = 0 can be Taylor expanded as
U ∝ −(x − xA), which implies that the relevant JWKB parameter |k(x − xA)| ∝ kU ∝ ω̂ ≈ N , as
k/m becomes large. Therefore this parameter remains finite as the packet approaches the stagnation
point, so if ray tracing worked initially then it will continue to work even as x(t) → xA. However,
the survival of the JWKB approximation merely masks the overall breakdown of linear theory
near xA.
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vortex pair. This is consistent with the PH + I conservation theorem: the growth in
|PH | must occur at the expense of I and J. A regular perturbation analysis keeps the
O(1) vortices fixed, but one can see from the conservation theorem how this must
fail at large times t = O(a−2): over such long times I and J will have decreased in
magnitude by an O(1) amount, and hence the mean flow will have been significantly
modified. These mean-flow changes would then have to be allowed to feed back on
the wavepacket, and in this way the perturbation analysis could be extended to such
long times. The above makes clear that the exponential growth stage in the evolution
of PH does not persist forever: |PH | can grow only at the expense of the finite vortex
impulse, and so there must be growth saturation at t = O(a−2).

It is intriguing to speculate about the flow features that might be observed over
such long times. The idea of wave–vortex duality discussed in § 5 reminds us that the
captured wavepacket behaves like a vortex pair or vortex dipole, with impulse equal to
PH . As already remarked in § 7.5, we have something like an incipient ‘leap-frogging’
situation. However, it is unclear what will happen in the later stages, when the
wavepacket would become wrapped laterally around the vortex pair and presumably
breaks down into passively advected filaments. This may be accompanied or preceded
by wave dissipation and the irreversible generation of potential vorticity anomalies qL,
as described in § 9.1. Idealized numerical simulations would be useful to test these spec-
ulative scenarios, especially if such simulations could be performed in a highly resolved
two-dimensional simulation. The need for very high spatial resolution is dictated by
the inevitable scale separation between mean-flow vortices and the crests of a captured
wavepacket, though it is possible that some progress could be made by a numerical
ray-tracing scheme such as that developed and used in Nazarenko et al. (1995).

11. Concluding remarks
This work has given us some important new insights into the mechanisms involved

in the missing-forces problem and into the general nature of what BM03 termed
‘vortex-core recoil’. As pointed out in § 7.2, the problem solved in BM03 comes under
the general heading of wave–vortex problems that satisfy the joint conservation of
Kelvin impulse I and horizontal wave pseudomomentum PH – see especially (7.9),
(7.11), (8.3) and (8.4) – justifying the notion of a PH + I budget.

We stress that a two-dimensional vortex monopole whose core is advected relative
to its surroundings has a well-defined rate of change of Kelvin impulse, just equal
and opposite to the rate of change of pseudomomentum due to wave refraction.
We can therefore say that a ‘pseudomomentum rule’ holds in just that sense: rates
of change of pseudomomentum due to mean-flow refraction are linked to opposite
rates of change of impulse, identifiable with equivalent forces on vortex cores in the
absence of waves – thus the effective location of the forces need not be the same as
the location of the pseudomomentum changes. Action at a distance is involved in the
interactions of wave packets and vortices, just as it is in ordinary vortex interactions,
and in any motion whatever to which the notions of balance and PV inversion
apply.

The next major challenge, already noted in § 7.1, is how to generalize – to what
extent we can generalize – the impulse concept to make it applicable to the less
idealized flows dealt with in realistic weather and climate models. These are the most
general flows to which the notions of balance and PV inversion apply. As it stands, the
impulse concept depends on the strong-stratification limit, banishing far-field recoil all
the way to infinity, which is much more restrictive. An even greater challenge, partly
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for technical reasons relating to the parallelized computer codes used in atmospheric
models, is to devise practical ‘gravity-wave parametrization schemes’ that will respect
the appropriately generalized PH + I budgets.

The guiding principle that has emerged can be stated as an expanded aphorism,
focusing on the simple exact relations summarized in § 6 and § 8: ‘What’s simple
is everything related to PV and Kelvin circulation; what’s complicated is everything
related to balance, PV inversion, spontaneous-adjustment emission and far-field recoil
– the emission of large-scale gravity waves that export pulses of momentum to distant
parts of the fluid domain, finite or infinite.’

We thank the referees for constructive comments that produced many significant
clarifications in the presentation. Carlo Barenghi, Natalia Berloff, Ulf Leonhardt,
Duncan O’Dell and Sergey Nazarenko kindly helped to update us on aspects of the
quantum fluids problem. M. E. M. is indebted to the UK Natural Environmental
Research Council for support under grant NER/A/S/2000/00452. Part of this
work was done whilst O. B. participated in the network “Geometrical methods in
geophysical fluid dynamics” funded by the UK Engineering and Physical Sciences
Research Council.
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